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Finite driving rates in interface models of Barkhausen noise

S. L. A. de Queiroz* and M. Bahiana†
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We consider a single-interface model for the description of Barkhausen noise in soft ferromagnetic materials.
Previously, the model was used only in the adiabatic regime of infinitely slow field ramping. We introduce
finite driving rates and analyze the scaling of event sizes and durations for different regimes of the driving rate.
Coexistence of intermittency, with nontrivial scaling laws, and finite-velocity interface motion is observed for
high enough driving rates. Power spectra show a decay;v2t, with t,2 for finite driving rates, revealing the
influence of the internal structure of avalanches.
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I. INTRODUCTION

The Barkhausen effect@1# constitutes a useful, nonde
structive probe into the domain structure of soft ferroma
netic materials. By ramping an externally applied magne
field within appropriately chosen ranges of intensity a
driving rate, one causes microscopic domain wall motio
i.e., magnetization jumps, within a sample. The consequ
changes in magnetic flux, in turn, induce a time-depend
electromotive forceV(t) on a coil wrapped around th
sample. Analysis ofV(t), assisted by suitable theoretic
modeling, may provide insight into both the domain structu
itself and its dynamical behavior.

Recent increased interest in the problem stems partly f
the successful application of methods of nonequilibrium s
tistical mechanics, such as a Langevin description
Fokker-Planck equations@2# and avalanche models@3–14#.
Although there is general agreement on the basic underl
mechanisms of Barkhausen noise, pinning down specific
tails to features of theoretical models has proved a comp
task. For instance, while several formulations have focu
on the motion of a single interface in a disordered medi
@2,3,5,6#, others have adopted a picture of nucleation of m
tiple domains in a random-field Ising system@4#.

The rapid and discrete variation of the magnetization
served in experiments is a direct manifestation of the e
tence of different time scales. Often the magnetization jum
are regarded as instantaneous events, but this is a simpl
tion that allows the description of a limited dynamical r
gime, as finite driving rates are known to affect several
pects of the hysteresis cycle.

Barkhausen noise is observed in the central part of
hysteresis cycle, near the coercive field where the magn
zation process is mainly due to domain wall motion, so
terface models are usually successful in describing the a
ciated nontrivial scaling laws@3,5,6,12,14#. In this paper we
study the evolution of a single two-dimensional interface
it advances, driven at a finite rate. The scaling of event s
and durations is analyzed for different regimes of the driv
rate.

*Electronic address:sldq@if.ufrj.br
†Electronic address:monica@if.ufrj.br
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II. MODEL: FINITE DRIVING RATES

Here we shall use the single-interface model introduced
Ref. @3# for the description of Barkhausen noise, with ada
tations for a finite driving rate. The interface at timet is
described, in space dimensionalityd, by its heighth(rW i ,t),
where rW i is the position vector of site i in a
(d21)-dimensional lattice. Here we consider onlyd53. At
each t, the height functionhi5h(rW i ,t) is assumed to be
single valued; thus the interface element corresponding
thed-dimensional position vectorrW i5(rW i ,hi) may be unam-
biguously labeled byi. Simulations are performed on a
Ld213` geometry, with the interface motion set along t
infinite direction. Therefore finite-size effects are controll
by the length parameterL @6#. Each elementi of the interface
experiences a force of the form

f i5u~rW i !1
k

g F (
j 51

g

hl j ( i )
2ghi G1He , ~1!

where

He5H2hM . ~2!

The first term on the right-hand side of Eq.~1! represents the
pinning forceu and brings quenched disorder into the mod
by being chosen randomly, for each lattice siterW i , from a
Gaussian distribution of zero mean and standard deviatioR.
Large negative values ofu lead to local elements where th
interface will tend to be pinned, as described in the simu
tion procedure below. The second term corresponds to a
operative interaction among interface elements, assu
here to be of elastic~surface tension! type. In this term,l j ( i )
is the position of thej th nearest neighbor of sitei andg is
the coordination number of the (d21)-dimensional lattice
over which the interface projects. The tendency of this te
is to minimize height differences among interface sit
higher ~lower! interface elements experience a negat
~positive! force from their neighboring elements. The forc
constantk gives the intensity of the elastic coupling, and
taken here as the unit forf. The last term is the effective
driving force, resulting from the applied uniform extern
field H and a demagnetizing field that is taken to be prop
©2001 The American Physical Society27-1
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tional to M5(1/Ld21)( i 51
Ld21

hi , the magnetization~per site!
of the previously flipped spins for a lattice of widthL.

For actual magnetic samples, the demagnetizing fiel
not necessarily uniform along the sample, as implied in
above expression; even when it is~e.g., for a uniformly mag-
netized ellipsoid!, h will depend on the system’s aspect rati
Therefore, our approach amounts to a simplification, wh
is nevertheless expected to capture the essential aspec
the problem. See Ref.@12# for a detailed discussion.

Here we useR55.0, k51, h50.05, the same values a
in the d53 simulations of Ref.@6#.

We start the simulation with a flat wall. All spins above
are unflipped. The applied fieldH is set to the saturation
value of the effective fieldHe , in order to minimize transien
effects~see, e.g., Fig. 1 of Ref.@6#!. The saturationHe de-
pends onR, k, andh ~not noticeably onL) @6#, and can be
found from small-lattice simulations. The forcef i is then
calculated for each unflipped site along the interface,
each spin at a site withf i>0 flips, causing the interface t
move up one step. The magnetization is updated, and
process continues, with as many sweeps of the whole la
as necessary, untilf i,0 for all sites, when the interfac
comes to a halt. The external field is then increased by
minimum amount needed to bring the most weakly pinn
element to motion. The avalanche size corresponds to
number of spins flipped between two interface stops.

In line with standard practice@7–11# our basic time unit is
one lattice sweep, during which the external field is ke
constant, and all spins on the interface are probed seq
tially as described above. In the adiabatic regime, the ex
nal field is kept constant for the whole duration of an av
lanche, i.e., for as many sweeps as it takes until no unst
sites are found along the interface. It is then increased by
amount needed to flip the weakest one. At finite drivi
rates, the field is increased by a fixed amount, hencef
denotedD, at the start of each sweep while an avalanche
taking place. Eventually, no more unstable sites will be le
and then one proceeds as in the adiabatic regime, increa
the field as much as necessary to start a new avalan
Calling this last quantitydH, the time interval between th
end of one event and the start of the next is thendH/D.

In what follows, we usually collected samples of 10 0
avalanches for each simulation, and data analysis has alw
been performed with the whole sets of data; however
figures such as scatter plots of duration versus size we
play only a representative subset, typically 500–1000 eve
in order to avoid unnecessary clutter.

III. SIZE AND DURATION DISTRIBUTIONS

We consider the single-interface model introduced in R
@3#, initially in the adiabatic limit. In Ref.@6# we showed
that, in the context of this model, the upper cutoff in t
avalanche size distribution is simply a manifestation
finite-size effects, i.e., of the widthL of the cross section o
our simulated systems perpendicular to the direction of in
face advance. Fitting our data to the customary power-
form multiplied by an exponential decay, namely,
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P~s!}s2t exp~2s/s0!, ~3!

we hadt in the range 1.2–1.4 ands0}Lu, u51.460.1.
The above value foru is consistent with 1/sk.2/3 ~de-

fined vias0;k21/sk, k being a generic demagnetization fa
tor!, found from both renormalization-group analysis and n
merical simulations of the interface model of Refs.@5,12,14#,
provided one makes the identificationk[1/L2, as pointed
out in Ref.@14#.

We first investigate whether finite widths affect properti
related to avalanche duration. In Fig. 1 one sees that in
adiabatic regime, apart from theL-dependent upper cutof
just mentioned, there is no distinguishable influence of fin
lattice width on the distribution of avalanche durationsT
against sizes.

For small events withs&10 flipping sites, duration varies
approximately linearly with size~collections of independent
localized flippings!. For larger, collective events, nontrivia
scaling takes hold; the relationship is described by the po
law T;ssnz ~notation borrowed from Refs.@8,11#!. Least-
squares fits of data excluding small avalanches up tosmin
510–20 givesnz50.5860.01, very similar to the resul
previously obtained in simulations of the nucleation mod
variously quoted as 0.5760.03~Ref. @8#! or 0.58~Ref. @11#!.
Thus, in this aspect at least, there is universality between
single-interface and nucleation pictures.

Similar values ofsnz are obtained also from slightly dif
ferent variants of interface models@5,12–15#. In particular,
the simulations reported in Ref.@15# give z51.5660.06 and
the roughness exponentz50.7560.02, which, together with
the scaling relations215n(21z) @see Eqs.~34!–~37! of
Ref. @12##, yieldssnz50.5760.02.

Furthermore, the distribution of durations fits reasona
well to a power law with exponential tail, similar to the siz
distribution Eq.~3!:

P~T!}T2a exp~2T/T0!, ~4!

where from standard probability theory,a511(t
21)/snz (51.560.2 from the values oft andsnz quoted

FIG. 1. Scatter plots of avalanche durationT ~number of lattice
sweeps! versus avalanche size~number of flipped sites!, in the adia-
batic regime. Bottom to top:L540, 80, 160, and 320; 500 even
displayed for each latticeL. Plots successively shifted upward by
factor of 10 on vertical scale, to avoid superposition. Straight l
has slope 0.58~see text!.
7-2
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FINITE DRIVING RATES IN INTERFACE MODELS OF . . . PHYSICAL REVIEW E 64 066127
above!. Indeed, on analyzing the data shown in Fig. 1 o
gets a in the range 1.3–1.5. The cutoffT0 is expected to
scale with the size cutoffs0 as T0;s0

snz , therefore~with
s0;L1.460.1 @6#!, one must haveT0;L0.8160.06. Direct analy-
sis of the data gives the latter exponent varying in the ra
0.65–0.9, broadly compatible with this.

Next, we gauge the effects of varying driving rates on
size-duration relationship. For sufficiently fast driving rate
one expects coalescence of avalanches that would be s
rate events in the adiabatic regime.

We start by fixingL580. D, the external field increase a
the start of each lattice sweep during an avalanche, is
driving rate. In Fig. 2 one hasD51025, 531025, 7.5
31025, and 1024.

The plot forD51025 is identical, apart from small fluc
tuations, to the corresponding one forL580 in the adiabatic
regime, shown in Fig. 1. We have checked that the sa
happens for the intermediate driving rates 102m, m58,7,6
~as expected!. Again, least-squares fits givesnz50.58
60.01 not only for the whole set ofD51025 data, but also
for the initial parts~with s&105) of those with faster driving
rates. These latter plots will be discussed further on.

We conclude that, forL580 and within the range ofD
50 –1025, there is no influence of the driving rate on theT-s
relationship, including the maximum avalanche size, wh
remains atsmax.105. So far, the results~i! t51.360.1; ~ii !
a51.560.2; and ~iii ! lack of dependence of behavior o
driving rate~at least, within fairly well defined windows o
D, for given L) show that the model under considerati
shares the same universality class as the interface mode
cussed in Refs.@5,12–14#, when dipolar interactions are ne
glected.

IV. RATE-DEPENDENT BEHAVIOR

We now investigate the different picture appearing
higher driving rates, already shown in Fig. 2. The scatter p
of duration against size forD5531025 shows traces of a
different behavior fors.smax as a higher slope develops
that point. AsD is further increased, it can be seen that th

FIG. 2. Scatter plots of avalanche durationT versus avalanche
size, for L580 and different driving ratesD. Bottom to top:D
51025, 531025, 7.531025, and 1024; 500 events displayed fo
first three, 1000 forD51024. Plots successively shifted upward b
a factor of 10 on vertical scale, to avoid superposition. Full strai
line has slope 0.58; dashed line has unitary slope~see text!.
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is coexistence between nontrivial scaling for sizes& the
adiabatic cutoff, andT;s behavior ~i.e., interface motion
with a finite velocity! for larger avalanche sizes.

A qualitative explanation of the above results goes as
lows. With H f( i ) and Hi( i 11) being, respectively, the ex
ternal fields at the end of thei th avalanche and at the start o
the (i 11)th, typically the corresponding gapsdHi

ad[Hi( i
11)2H f( i ) in the adiabatic regime are larger than, say, s
eral timesD for D<1025; therefore few avalanches merg
for such driving rates. For largerD more gaps are closed, an
the distribution changes significantly.

In order to gain a quantitative understanding of this, at
same time checking for a possibleL dependence, we stud
the probability distribution ofdHad for different lattice
widths. In Fig. 3 we show the cumulative probabili
P(dHad,dH0) of dHad being smaller thandH0. Before
analyzing theL dependence of the curves, we focus onL
580. One sees thatP(dHad,dH0);331023, and 7
31022, respectively fordH051025, and 1024. From Fig.
2, the maximum avalanche duration isTmax;53103, sug-
gesting that the finite driving rate is irrelevant as long as
quantity P[P(L,D)5TmaxP(dHad,D)&O(10). On the
contrary, forD51024 Figs. 1 and 3 show thatP;O(100).

The inset of Fig. 3 shows thatP(dHad,dH0) is, to a
good approximation, a function ofLxdH0, where the best
collapse plots are obtained in the rangex51.960.1. Al-
though at this point we are not able to advance an argum
it may be thatx52 exactly.

It is thus clear that asL increases the range ofD for which
adiabatic behavior dominates is shrunk. Recall that, on to
the scaling of probabilities withLxdH0 , Tmax ~which scales
with the cutoff T0) also depends onLv, v.0.81 @see the
paragraph below Eq.~4!#. Thus, in the limit L→` one
should have adiabaticlike properties only strictly atD50.
Before attaching much significance to this, one must bea
mind the main result of Ref.@6#: in the present model,L is
closely correlated with the~average, or typical! domain size
in experimental situations. Therefore, one does not have
usual concern in the study of equilibrium second-order ph

t

FIG. 3. Adiabatic regime: probabilityP(dHad,dH0) of the gap
between consecutive avalanches being smaller thandH0, against
dH0. Left to right: L5320, 160, 80, and 40. 40 000 events forL
540, 10 000 for larger widths. Inset:P(dHad,dH0) against
(L/40)x dH0 , x51.9. Same ranges as main plot on both horizon
and vertical axes~see text!.
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transitions of trying to extract the thermodynamic limit fro
finite-size scaling: finite-L results must be analyzed in the
own right. Nevertheless, it is crucial to investigate the s
dependence of relevant quantities, as done here, in ord
separate trulyL-independent features from crossover beh
ior.

The departures from rate-independent behavior, as
picted in Fig. 2, require further analysis. A least-squares fi
data in that figure forD51024, 10<s<53104 ~the hori-
zontal extent of the full line shown there! gives snz50.58
60.01. The events in this range ofs are;20% of the total
number of avalanches; another 40% are small ones wis
,10, with the remaining 40% larger than 53104 sites. The
overall probability densityP(s) for D51024, with the cus-
tomary logarithmic binning, is displayed in Fig. 4, for th
four driving rates of Fig. 2. The full straight line sugges
that theD51024 data with 1<s&53104 can be fitted by a
power lawP(s)}s21.6. This larger effective value oft can
be understood by observing the depletion of events w
sizes 104–105 in the crossover region of Fig. 2. Curves f
D5531025 and 7.531025 display intermediate behavio
with only an incipient shoulder at 104&s&105 for the
former.

We note that in earlier studies, both experimental@16# and
numerical@17#, it was found that the exponentst of Eq. ~3!
and a of Eq. ~4! decreaseas driving rate increases, appa
ently in contradiction with the above. Also, a small should
can be seen in the data for alloys under stress in Fig. 1~a! of
Ref. @14#. We comment on each of these in turn.

First, recent work@14# shows that the FeSi alloys of Re
@16# and, e.g., amorphous alloys under stress belong to
ferent universality classes; while the former follow a mea
field description~giving rise to actual rate-dependent exp
nents!, the latter display rate-independent exponents w
values close to those found both for the present model,
for the model of Refs.@5,12–14# when dipolar interactions
are neglected~see the remarks at the end of Sec. III!.

As regards the simulations of Ref.@17#, it may be that the
model used here does not belong to the same dynam
universality class as the~two-dimensional! random-field
model with vacancies used there. However, examination

FIG. 4. Probability distributions of avalanche sizes forL580.
Bottom to top:D51025, 531025, 7.531025, and 1024. Curves
successively shifted upward by a factor of 10 on vertical scale
avoid superposition~baseline isD51025 plot!. Straight lines have
slopes as indicated, and are intended as guides to the eye.
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the data in Fig. 4 suggests an alternative explanation, as
lows. Although fits of the straight-line parts of the distrib
tions givet increasing with increasingD, fits of the whole
sets of data to a form such as Eq.~3!, with two free param-
eters (t ands0), in fact givedecreasingvalues oft for larger
D, on account of the large-s shoulders. Of course, this hap
pens at the expense of the quality of the fit; however, for l
dramatic departures than those shown in the figure, the
of quality might not be obvious.

Finally, the incipient shoulders shown in Ref.@14# appear
to bebona fidecandidates for the above description, as th
correspond to materials to which, so far, the present mo
seems to fit well. We believe that a reexamination of expe
mental and simulational raw data, in search of a coexiste
of regimes, would be worthwhile. As pointed out in Re
@17#, ‘‘ @a faster driving rate# overdrives weaker pinning cen
ters thus rendering the occurrence of larger avalanches m
probable.’’ For the present model this indeed happens, on
does so at the expense of depleting the histograms of
occurrence of events& the maximum size for the adiabati
regime. We expect the present study to motivate further
perimental and numerical investigation along these lines

V. INTERMITTENCY

It is also important to analyze how the intermittency
events is gradually lost as more and more avalanches
lesce with increasing driving rate. This can be done by
fining y as the fraction of time spent during avalanches. T
duration of an avalanche being given byT( i )5@H f( i )
2Hi( i )#/D, the overall duration of a simulation withN
events isTN5@H f(N)2Hi(1)#/D; therefore

y5~1/TN!(
i 51

N

T~ i !

5H (
i 51

N

@H f~ i !2Hi~ i !#J Y @H f~N!2Hi~1!#.

In the adiabatic regimeD50, avalanches are instantaneou
and y50. As D is increased, avalanches will be observ
part of the time, so 0,y,1, and in the limit of largeD one
expects that a depinning transition will lead toy51. Figure
5 shows the plot of 12y versusD for L580. The best non-

o

FIG. 5. Plot of 12y (y is the fraction of the total duration spen
during avalanches! against driving rateD, for L580. Solid curve is
fit to 12y5exp@2(D/D0)

a#, a51.2, D051.5731025. Inset: y
againstD for slow driving; dashed line has unitary slope.
7-4
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FINITE DRIVING RATES IN INTERFACE MODELS OF . . . PHYSICAL REVIEW E 64 066127
linear fit of the whole set of points is given by 12y
5exp@2(D/D0)a# with the optimum values of the free pa
rametersa51.2 andD051.5731025. The inset shows the
rate-independent regime corresponding toy!1, where one
clearly hasy;D. Such linearity is to be expected, as ess
tially the same events occur for anyD in this interval: for a
given avalanche,H f( i )2Hi( i ) is proportional toD, while
the denominatorH f(N)2Hi(1) is unchanged. The fact tha
the best-fitting value ofa is 1.2 indicates that the decay o
12y for largeD is in fact faster than exp@2(D/D0)1.2#, so
one is having a compensation among the different region
the plot, in order to minimize the overall deviation. A fit o
the subset of data forD>1025 indeed givesa.2.

VI. POWER SPECTRA

Power spectra and their analysis are an important tool
the understanding of noise in disordered systems, and
cifically for the Barkhausen effect; see, e.g., Ref.@11# for a
recent survey of results and references; see also Ref.@18#.

We shall always makeL580 in this section. With the uni
of time given by a lattice sweep, the maximum frequency
be analyzed isvM51/2, as standard Fourier theory pr
scribes.

We attempt to concentrate on the nontrivial scaling
gime. To this end, we recall from Fig. 2 that, whatever t
driving rate, events of sizes&10 sites~of which there is
always a large fraction of the total! are collections of inde-
pendent, localized flippings. Thus their duration is prop
tional to size. Therefore, when looking at power-spectr
data with frequenciesv*0.1, one will have a strong inpu
from such non critical flippings. Although one might think o
ways to expurgate the corresponding contributions, we s
simply restrict ourselves to the frequency regionv<0.1. As
shown in the following, this still leaves a suitably wide win
dow of observation, in what we call the intermediat
frequency range~for v→0 the power spectrum goes flat, a
details of the temporal series are washed out on long t
scales!.

The discussion of power spectra revolves mainly arou
the powert with which decay sets in, in the intermediat
frequency range:P(v);v2t. The following points were
made in Ref.@11#: ~1! While one hast52 for white noise
and mean-field descriptions, and early studies of
Barkhausen effect predictedt5(32t)/snz (52.960.2 for
the present model, witht51.360.1, snz50.5860.01), it
was found that fort,2 one should havet51/snz (51.72
60.03 here!, instead of (32t)/snz. Several experimenta
and simulational results were shown to be compatible w
the latter finding.~2! It was remarked that the result of earli
calculations of the power spectrum@19# for sandpile models,
which gaveP(v);v22 and were cited as an explanation f
such behavior in~among other systems! Barkhausen noise
depends crucially on the assumption that the avalanche s
can be approximated by a box function:V(t)5S/T(0,t
,T) for an avalanche of sizeS and durationT.

In the present model, one can tune the degree to which
internal structure of an avalanche is taken into account,
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varying D. While for D50 all events are seen as spikes
zero duration, the internal fluctuations within avalanches
come much more noticeable asD increases, even still within
the adiabatic regime. Recall that, forD51025, L580, ava-
lanches take up;40% of the total duration of a simulatio
~see the inset of Fig. 5!.

Below, we set out to probe points~1! and ~2!. Accord-
ingly, in Fig. 6 we plot the power spectra forD51027 ~deep
within the adiabatic regime!, 1026, 1025, and 1024.

Starting from the slowest driving rate considered, o
sees that disregarding the internal structure of avalanc
indeed yields a dependence of the power spectrum onv22.
This is entirely consistent with point~2! above. The next
graph, D51026, is somewhat difficult to interpret on its
own. However, the trend becomes clearer when theD
51025 data are taken into account: as more details of
intra-avalanche fluctuations enter into the spectrum, its de
becomes slower,;v21.5. Although the numerical values ar
somewhat off the mark, one definitely sees that the tren
toward t51/snz when intra-avalanche correlations are co
sidered, as opposed to the alternativet5(32t)/snz. This is
in support of point~1! above, showing that very likely the
present model behaves similarly to the random-field one
Ref. @11#, in this respect.

Finally, for D51024 there is an apparent trend revers
from a least-squares fit of data in the range ofv shown, one
has the exponent 1.8360.01. It must be recalled that one
then clearly in the coexistence regime explained above~that
is, away from a purely intermittent, adiabatic framework!;
therefore there is strong influence of interavalanche corr
tions. It is then not surprising that the picture starts to diff
e.g., from that of Ref.@11#, where only interavalanche corre
lations were taken into account.

Clearly, more work is needed to sort out this last point.
one goes deeper into the depinned regime, it may well
that the power-spectrum decay returns to thev22 form char-
acteristic of uncorrelated events. In such a scenario,
above value oft51.83 would in fact be an effective expo
nent, marking a crossover towardt52.

FIG. 6. Continuous lines: power spectra forL580 and various
driving rates. Bottom to top,D51027, 1026, 1025, and 1024. The
vertical coordinates have been shifted by differing amounts for e
plot, so they could fit in a single graph. Dashed lines have slope
indicated, and are intended as guides to the eye.
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VII. CONCLUSIONS

We have used a single-interface model with an adjusta
finite driving rate to simulate the time sequence
Barkhausen jumps of a three-dimensional system. Direct
servation of duration as a function of size determines
existence of two dynamical regimes regarding thesnz ex-
ponent, that is, for low driving rates@D,Dc(L)#, snz
50.58 up to a limiting event size, and the avalanche dyna
ics is basically rate independent. For higher driving ra
@D.Dc(L)# the previous regime coexists with one for whic
snz51. The rate dependency of the second regime is
dent as we analyze the probability distribution of avalanc
sizes: for high driving rates it deviates considerably from
usual formP(s)}s2t exp(2s/s0). The passage from one re
gime to the other is rather sharp, and the corresponding v
of driving rate Dc depends on the system size: an infin
system will have a rate-independent dynamics forD50 only,
that is,Dc(`)50.

Considering only the power-law portion of theP(s)
graphs for finite driving rate, we find exponents that incre
with increasing driving rate, in apparent contradiction w
previous theoretical and experimental results. On the o
hand, when the fitting assumes a power law with an ex
nential cutoff, and the whole set of data is taken into acco
the effective value oft decreases as the driving rate is i
creased. It is clear though that this form does not provide
adequate description of the simulated data forD.Dc , so we
believe that this may be at least part of the explanation
inconsistency in previously reported values oft.
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The power spectra for various driving rates clearly sh
that with increasing driving rates, intra-avalanche corre
tions become more relevant, as the time scale involved
veals details of events occurring with a finite duration.
direct consequence is the relationP(v);v2t observed: as
the internal structure of the avalanches is probed,t decreases
from the valuet52, characteristic of adiabatic time series

In summary, we have studied the effect of a finite drivi
rate on the scaling properties of the Barkhausen noise. As
ultimate goal is the description of experimental results, it
important to understand the limitations involved in real e
periments as compared to computational ones. In princi
simulations may use any value for the driving rate, as wel
any system size, or at least we may say that our choice
values is broad as compared to real experiments. A typ
experiment usually has driving rates spanning only one or
of magnitude, and values of domain sizes predetermined
the fabrication conditions of the sample and applied stre
So, as the experiment is designed with these parameters
scaling regime is basically already chosen. Any further co
parison with theoretical or simulation results must be care
in the sense that the same regime has to be studied.
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@10# B. Tadić and U. Nowak, Phys. Rev. E61, 4610~2000!.
@11# M.C. Kuntz and J.P. Sethna, Phys. Rev. B62, 11 699~2000!.
@12# S. Zapperi, P. Cizeau, G. Durin, and H.E. Stanley, Phys. Re

58, 6353~1998!.
@13# G. Durin and S. Zapperi, J. Appl. Phys.85, 5196~1999!.
@14# G. Durin and S. Zapperi, Phys. Rev. Lett.84, 4705~2000!.
@15# H. Leschhorn, T. Nattermann, S. Stepanow, and L.H. Ta

Ann. Phys.~Leipzig! 6, 1 ~1997!.
@16# G. Bertotti, G. Durin, and A. Magni, J. Appl. Phys.75, 5490

~1994!.
@17# B. Tadić, Phys. Rev. Lett.77, 3843~1996!.
@18# G. Durin and S. Zapperi, e-print cond-mat/0106113.
@19# H.J. Jensen, K. Christensen, and H.C. Fogedby, Phys. Re

40, 7425~1989!.
7-6


